Petosemtamab (MCLA-158) with pembrolizumab as first-line (1L) treatment of PD-L1+ recurrent/metastatic (r/m) head and neck squamous cell carcinoma (HNSCC): Phase 2 trial

Carla M. L. van Herpen,¹ Amaury Daste,² Virginia Arrazubi,³ Jan Paul de Boer,⁴ Katerin I. Rojas,⁵ Florian Clatot,⁶ Elisa Fontana,⁷ Amir Harandi,⁸ Jessica Ann Hellyer,⁹ Antoine Hollebecque,¹⁰ Christophe Le Tourneau,¹¹ Thibault Mazard,¹² Cesar A. Perez,¹³ Esma Saada,¹⁴ Assuntina G. Sacco,¹⁵ Eduardo Pennella,¹⁶ Fabian Zohren,¹⁶ Yu-Ming Shen,¹⁶ Renée de Leeuw,¹⁶ Jérôme Fayette¹⁷

or G2

Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands; ²Oncology, Centre Hospital Universitario de Navarra, Pamplona, Spain; ⁴Department of Medical Oncology, Centre Hospital Universitario de Navarra, Pamplona, Spain; ⁴Department of Medical Oncology, Centre Hospital, Barcelona, Spain; ⁴Department of Medical Oncology, Netherlands; ⁵Vall d'Hebron Institute of Oncology, Radboud University Hospital, Barcelona, Spain; ⁴Department of Medical Oncology, Centre Hospital Universitario de Navarra, Pamplona, Spain; ⁴Department of Medical Oncology, Netherlands; ⁵Vall d'Hebron Institute of Oncology, Radboud University Hospital, Barcelona, Spain; ⁴Department of Medical Oncology, Netherlands; ⁵Vall d'Hebron Institute of Oncology, Radboud University Hospital, Barcelona, Spain; ⁴Department of Medical Oncology, Netherlands; ⁵Vall d'Hebron Institute of Oncology, Netherlands; ⁵Vall d'Hebron Institute, Antoni van Leeuwenhoek, Amsterdam, Netherlands; ⁵Vall d'Hebron Institute of Oncology, Radboud University Hospital, Barcelona, Spain; ⁴Department of Medical Oncology, Netherlands; ⁵Vall d'Hebron Institute, Antoni van Leeuwenhoek, Amsterdam, Netherlands; ⁵Vall d'Hebron Institute of Oncology, Netherlands; ⁴Department of Medical Oncology, Netherlands; ⁴Departmen Example is a construct of Paris-Saclay, Villejuif, France; ¹² Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹² Institut Régional du Cancer de Montpellier (ICM), Montpellier, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁴ Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris-Saclay Uni ¹³Sarah Cannon Research Institute at Florida Cancer Specialists, Orlando, FL, USA; ¹⁴Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France; ¹⁵Department of Medical Oncology, Léon Bérard Center, University of Lyon, Lyon, France

BACKGROUND

- EGFR and WNT are oncogenic and mitogenic drivers in several cancer types, including HNSCC¹⁻⁴
- LGR5 is a receptor of WNT signaling and is upregulated in many cancer types^{5,6}
- Petosemtamab: Biclonics bispecific antibody targeting EGFR and LGR5^{1,2}
- Mechanism of action^{1,2}:

ABSTRACT

6024

- Inhibition of EGFR ligand binding and downstream signaling
- Degradation of EGFR via LGR5 internalization
- Engagement of host immune cells via enhanced ADCC
- Demonstrated substantial efficacy as a monotherapy in 2L+ r/m HNSCC (ORR 36%, mOS 11.4 months, N=75)⁷
- Demonstrated preliminary clinically meaningful activity and favorable safety in combination with pembrolizumab in 1L PD-L1+ r/m HNSCC⁸
- Granted two FDA Breakthrough Therapy designations:⁹
 - As monotherapy for 2L+ r/m HNSCC
 - In combination with pembrolizumab for 1L PD-L1+ r/m HNSCC

TRIAL DESIGN AND OBJECTIVES

Petosemtamab in combination with pembrolizumab is being evaluated in an ongoing Phase 2, open-label, global, multicenter trial (ClinicalTrials.gov Identifier: NCT03526835)

Phase 2 trial design

Key inclusion criteria

- 1L PD-L1+ r/m HNSCC^a
- ECOG PS 0-1
- Measurable disease

- Petosemtamab 1500 mg IV, Q2W +
- pembrolizumab 400 mg IV Q6W
- Until PD or toxicity • Tumor assessment Q8W

Objectives

Primary objectives ORR using RECIST v1.1 per investigator, safety, and tolerability

Secondary and exploratory objectives DOR and PFS using RECIST v1.1 per investigator, OS, PK, immunogenicity,

and biomarkers

Efficacy evaluable population

Patients treated (with 1 or more doses) as of the data cutoff date and either ≥ 1 post-baseline scan or discontinued early due to disease progression or death

Enrollment and analysis			
Data cutoff date 27 February 2025	Efficacy evaluable population 43 patients		
Enrollment 45 patients	2 patients were excluded that did not meet the criteria for the efficacy evaluable population		

^aPD-L1+ refers to patients with tumors expressing PD-L1 CPS \geq 1.

1L: first-line; 2L: second-line; ADCC: antibody-dependent cellular cytotoxicity; CPS: combined positive score; DOR: duration of response; ECOG PS: Eastern Cooperative Oncology Group performance status; EGFR: epidermal growth factor receptor; FDA: Food and Drug Administration; HNSCC: head and neck squamous cell carcinoma; IV: intravenous; LGR5: leucine-rich repeatcontaining G-protein coupled receptor 5; mOS: median overall survival; ORR: overall response rate; OS: overall survival; PD: progressive disease; PD-L1(+): programmed cell death ligand 1 (positive); PFS: progression-free survival; PK: pharmacokinetics; Q#W: every # weeks; r/m: recurrent/metastatic; RECIST v1.1: Response Evaluation Criteria in Solid Tumors version 1.1; WNT: wingless-related integration site.

Follow-up

Survival follow-up

up to 3 years

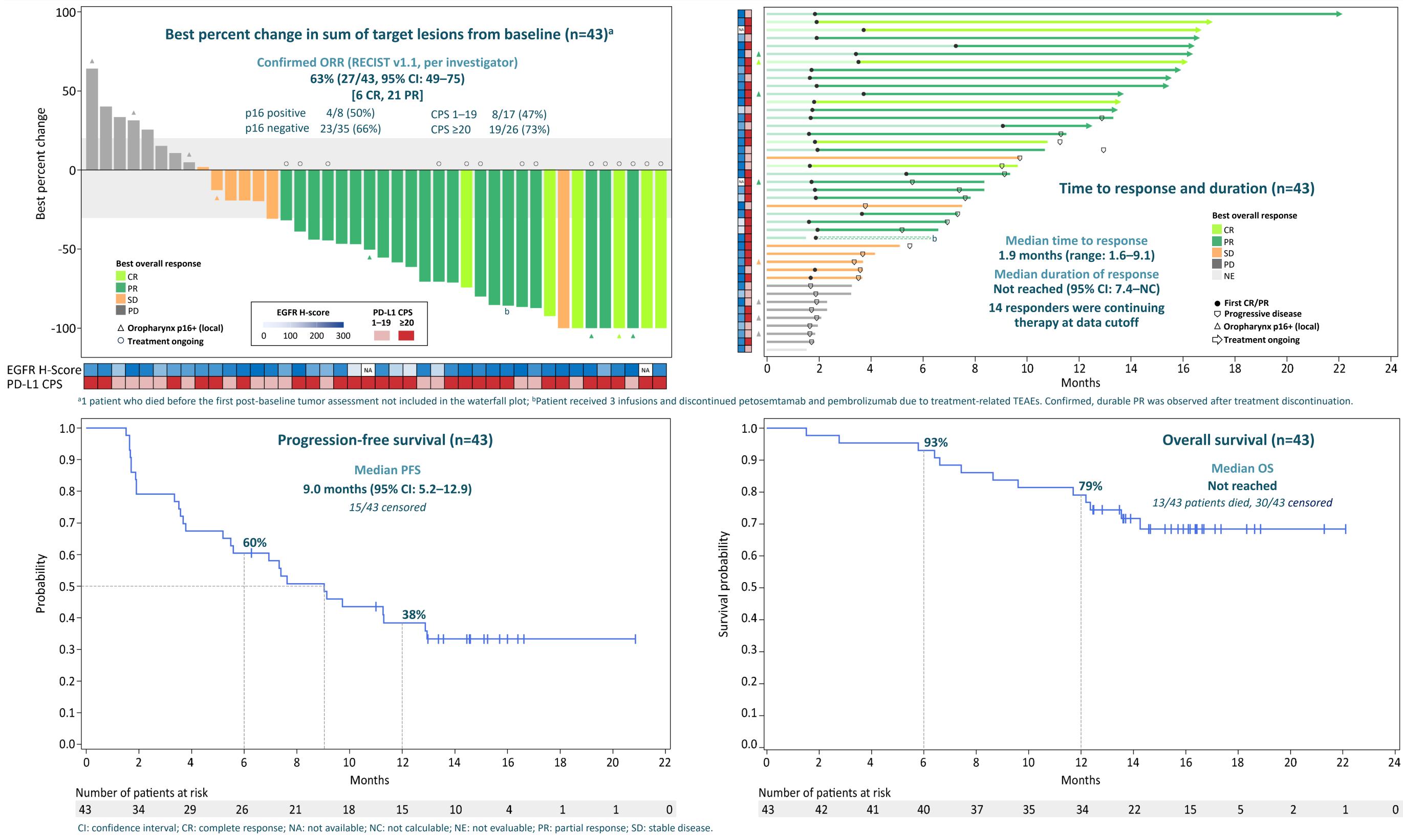
PATIENT POPULATION

mographics and disease cha	aracteristics N=45			
e , years, median (range)	64 (23–80)			
ale / female, n (%)	35 (78) / 10 (22)			
OG PS 0 / 1 , n (%)	16 (36) / 29 (64)			
ain tumor location, n (%)				
Oral cavity	17 (38)			
Oropharynx	14 (31)			
_arynx	7 (16)			
Hypopharynx	5 (11)			
Other ^a	2 (4)			
-L1 status (local) , n (%)				
PD-L1 positive	45 (100)			
CPS 1–19 / ≥20	19 (42) / 26 (58)			
6 (HPV) status (local): Oropharynx (n=14), n (%)				
o16 positive	8 (57)			
o16 negative ^b	6 (43)			
i FR (IHC) H-score , edian (range) ^c	240 (0–300)			

Patient disposition	N=45			
Treatment ongoing, n (%)	14 (31)			
Treatment discontinuation, n (%)	31 (69)			
Disease progression Withdrawal of consent Related adverse event ^d Symptomatic deterioration Death (unrelated to treatment)	25 (56) 2 (4) 2 (4) 1 (2) 1 (2)			
Petosemtamab exposure duration, months				
Median (range) Mean (with 14 patients ongoing)	8.3 (0.5–22.1) 8.7			
Duration of follow-up , months, median (range) 14.3 (1.5–22.				
^a 1 patient with HNSCC from unknown primary tumor location, 1 patient with HNSCC from sinonasal primary tumor;				

^bIncludes 1 patient whose tumor p16 status was subsequently

asthenia (G2) and diarrhea (G1), 1 patient discontinued due to


confirmed negative by central testing; ^c2 patients had no IHC

H-score (EGFR) available; ^d1 patient discontinued due to

dermatitis acneiform (G3).

G: Grade; HPV: human papillomavirus; IHC: immunohistochemistry

EFFICACY

SAFETY

• TEAEs were reported in 45 patients; most were G1

• G≥3 TEAEs occurred in 27 patients (60%), including 20 (44%) who experienced treatment-related TEAEs • No individual G≥3 TEAE occurred in >7% of patients

• No G5 treatment-related TEAEs were reported

• IRRs^a occurred in 38% of patients, with 7% G3; no G4 or 5; mainly occurred during first infusion and

were resolved

• IRRs were managed with premedication and prolonged infusion

No significant overlapping toxicities were observed

^aIRR is a composite term for one or multiple signs/symptoms during the 24-hour period after initiating the petosemtamab infusion, judged by investigators as an IRR; ^bMost common TEAEs, irrespective of causality, are defined as adverse events with onset date on or after date of first administration of study drug and ≤30 days post-treatment. IRR: infusion-related reaction; Mg: magnesium; TEAE: treatment-emergent adverse event

		(
TEAEs irrespective of causality (≥20% of patients), n (?				
Preferred term	All grades	Grades 3–		
At least 1 TEAE ^b	45 (100)	27 (60)		
Asthenia	23 (51)	3 (7)		
Acneiform dermatitis	22 (49)	3 (7)		
Rash	20 (44)	0		
Blood Mg decreased	18 (40)	3 (7)		
Skin fissures	18 (40)	1 (2)		
Constipation	16 (36)	0		
Nausea	16 (36)	1 (2)		
Folliculitis	15 (33)	1 (2)		
Dry skin	14 (31)	1 (2)		
Paronychia	14 (31)	1 (2)		
Diarrhea	13 (29)	3 (7)		
Pruritus	13 (29)	0		
Stomatitis	13 (29)	2 (4)		
Hypotension	10 (22)	2 (4)		
Cough	9 (20)	0		
Tumor pain	9 (20)	2 (4)		

EGFR Fab

K₂ 0.22nM

LGR5 Fab

K_~ 0.86nM

CONCLUSIONS

Petosemtamab with pembrolizumab in 1L PD-L1+ r/m HNSCC:

• Clinically meaningful efficacy and durability

- 63% ORR, with responses across p16 and CPS subgroups
- Median PFS of 9 months, and mean duration of exposure of 8.7 months, with 14 responders still ongoing
- 79% OS rate at 12 months
- Favorable safety profile with no new safety signals
- Potential first and best-in-class treatment for 1L PD-L1+ r/m HNSCC
- Phase 3 registrational trials in r/m HNSCC enrolling
 - 1L PD-L1+ r/m HNSCC with pembrolizumab (LiGeR-HN1, NCT06525220)
 - 2/3L r/m HNSCC as monotherapy (LiGeR-HN2, NCT06496178)

References

- **1.** Herpers B, et al. *Nat Cancer*. 2022;3(4):418–436.
- **2.** Lundberg AS, et al. *Cancers*. 2025;17 (17):1665.
- **3.** Schinke H, et al. *Mol Cancer*. 2022;21(1):178.
- **4.** Parsons MJ, et al. *Cancer Discov*. 2021;11(10):2413–2429.
- **5.** Xu L, et al. *Stem Cell Res Ther.* 2019;10(1):219.
- **6.** Katoh M. *Int J Oncol.* 2017;51(5):1357–1369.

7. Le Tourneau C, et al. Ann Oncol. 2024;35(Suppl 4):S1554–S1574

[mini-oral presentation 411MO at ESMO Asia 2024].

8. Fayette J, et al. J Clin Oncol. 2024;42(Suppl 16):6014 [oral presentation at ASCO 2024].

9. Merus N.V. News release (2025), available at: <u>ir.merus.nl/news-</u> releases/news-release-details/petosemtamab-granted-breakthroughtherapy-designation-us-fda-1l (accessed 06May25).

Acknowledgments

We thank the patients and their families, the investigators and their teams, Merus colleagues (including Marina Magin Ferrer); clinical research organizations, and vendors. Study sponsored by Merus N.V.

Presenting author disclosures

C.M.L. van Herpen is a consultant or advisor for Bayer, Bristol Myers Squibb, Ipsen, MSD, Regeneron, and the TRK Fusion Cancer Medical Education Steering Committee; and has received research funding from AstraZeneca, Bristol Myers Squibb, Ipsen, Merck, MSD, Novartis, and Sanofi.

ClinicalTrials.gov Identifier: NCT03526835

Contact information:

Dr. Eduardo Pennella, E.Pennella@merus.nl

